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During the period of this grant, we have been working on the development of
Quantum Algorithms for nonlinear physical systems, in collaboration with Dr. Jeff Yepez
(Hanscom Field) and Dr. Linda Vahala (Old Dominion University). In particular, quantum
algorithms have been developed for

(a) solitons
“Quantum Lattice Gas Representation of Some Classical Solitons™
G. Vahala, J. Yepez and L. Vahala
Phys. Lett. A310, 187-196 (2003)

“Quantum lattice gas representation for vector solitons”
G. Vahala, L. Vahala, and J. Yepez
SPIE Conf. Proc. 5105, 273 — 281 (2003)

“Inelastic Vector Soliton Collisions: A Quantum Lattice Gas Representation”
G. Vahala, L. Vahala and J. Yepez
Phil. Trans.. Roy Soc. London (to be published)

“Quantum Lattice Representation of Dark Solitons”
G. Vahala, L. Vahala, and J. Yepez
SPIE Conf. Proc, submitted (2004)

(b) 1D MHD-Burgers equation
“Lattice Boltzmann and Quantum Lattice Gas Representations of One-Dimensional
Magnetohydrodynamic Turbulence”
L. Vahala, G. Vahala and J. Yepez
Phys. Lett. A306, 227-234 (2003)

We have predominantly concentrated on soliton research since exact solutions are
known for KdV and both the scalar and vector nonlinear Schrodinger equation (NLS) as
these will provide a stringent test on our quantum algorithms. The spatial dimension is
discretized into a set of spatial nodes. For modeling either the KdV equation or the scalar
and vector NLSeach scalar field component we require 2 qubits at each lattice site. The on-
site qubits are entangled by the unitary collision operator and this entanglement is spread
throughout the system by unitary streaming. In particular, the KdV equation is modeled by
the tensor product of the on-site unitary collision matrix
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where S’l is the global streaming operator on qubit-1 to the neighboring lattice site while the
transpose streaming operator on qubit-2 is 3’2. C is the tensor product of the on-site collision

matrix U v and C* is the adjoint operator. In the continuum limit, the resulting partial
differential equation is the KdV equation
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after the phase transformation is introduced to yield the nonlinear “potential” term
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The specific streaming sequence is required to eliminate the standard diffusive/dispersive

& /0x* term and thus give the required leading order linear term of the KdV-equation
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To recover the scalar NLS we now entangle the on-site two qubits by the unitary
collision operator
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and utilize the global collide-stream algorithm
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The accuracy of the finite quantum difference algorithm becomes second order by

symmetrizing the collide-stream algorithm on each on-site qubit. The nonlinear potential
term is recovered by the phase transformation
v > exp[iV At]y , with ¥ =]|y[
to yield the cubic NLS in the continuum limit
dy Oy 2
i— + —= + =0
ot x> [Wl v

These algorithms are readily extended to consider the coupling of the polarizations due to the
birefringent medium. In this case we have two coupled NLS equations, requiring two
qubits/node for each polarization. The coupling between the two polarizations is achieved by
the appropriate coupling phase transformation that now couples all four on-site qubits. An
interesting exactly soluble example is the inelastic collision of vector Manakov solitons in
which for one of the polarizations a soliton is destroyed. It reforms following a second
collision
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